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Abstract

The analysis of a class of quasi-planar transmission

lines in circular/elliptical waveguides is introduced. Data

will be presented to characterize wave propagation in mi-

crostrip and slotlines in closed and semi-open circular

metallic enclosures. The method of lines has been modi-

fied for thk problem to treat curved and open boundary

value problems in this type of transmission lines.

INTRODUCTION

Since the early paper by Robertson [1] in 1955, de-

scribing an “Ultra-Bandwidth Finline Coupler”, quasi-

planar transmission lines in circular or elliptical waveg-

uide housings have been almost totally neglected. Only

recently a paper by Costache and Hoefer [2] gave some

inside in dispersion characteristics of bilateral finlines in

circular waveguides. On the other hand, quasi-planar

transmission lines in circular/elliptical waveguides are of

potential interest since they may provide a better control

of field polarization for phase shifters, antenna feed lines,

traveling wave isolators etc.

The purpose of this paper is to extend the knowl-

edge about wave propagation for a larger variety of qussi-

planar transmission lines s~ielded by circular/elliptical

waveguide housing. In particular we will analyze mi-

crostrip, suspended microstrip, slotline and suspended

slotline with closed circular or elliptic metallic shield-

ing. We will also investigate the semi-open boundary

case where the transmission line structure is enclosed by

a half-circular shield and the groundplane removed. Fig.

1 shows a variety of structures to be investigated in this

paper.

A rigorous analysis of wave propagation in bilateral

finlines with circular housing using the Finite Element

Method (FEM) was recently published in [2]. However, in

this approach large systems of equations must be solved

directly which requires considerable memory space and

computing power. Using the Method Of Lines (MOL) in-

stead we are able to apply a discrete orthogonal transfor-

mation and the eigenvalues problem is essentially solved
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Figure 1:

Sample of quasi-planar transmission line cross-

sections in rectangular,

circular, semi-circular, closed and semi-closed

metallic enclosures
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analytically in the transformed domain. This procedure

requires only a one-dimensional discretization of the cross-

section and thus reduces the matrix sizes in the original

domain significantly. At the same time the computer

algorithm is considerably faster and does not require su-

percomputer power.

In the past the MOL was mainly applied to simple

and in most cases rectangular structures embedded in a

metallic (rectangular) enclosure. In this paper we will

modify the MOL to include also curved as well as semi-

open boundaries.

THEORY

The principle steps involved can best be explained

for the symmetrical stripline covered by a semi-circular

shield, shown in Fig. 2. Consider first of all the MOL

principle applied to the same structure with a rectangular

shield. All field components in the individual subregions

are found from a superposition of two scalar potentials

fi = *Vx Vx(W’e,Z-Vx(WheZ) (1)

B = Vx(Wee2’)+
1

—V x V x (UheZ)
jwp

(2)

Discretizing the cross-section in x direction allows to write

the m–dependent variables in vector form which includes

the lateral boundary and edge conditions. Applying an

orthogonal transformation and subsequently a decoupling

procedure we are able to rewrite the partial differential

Helmholtz equations as a system of ordinary differential

equations which depend only on the y-direction. This

leads to a set of inhomogeneous transmission line equa-

tions for each homogeneous substrate layer

[sinh-ye,h(~z - vI)] & [4]

[coshve)h(v, - v,)] )( )[%1g,
(3)

Up to here the method is well known from [3]-[5]. The

matrix equation in (3) is a function of the y-coordinate

at discrete points in x-direction and the boundary con-

ditions are, once they are satisfied at one location in Z,

assumed to be satisfied at each z-coordinate along the

boundary. This is not true for a curved waveguide hous-

ing. In this case the field components tangential (Et)

and normal (H.) to the boundary are composed of vec-

tor components which vary along the z-coordinate. To

account for this variation in boundary conditions in the

discretization procedure we rewrite the function which

describes the curvature of the waveguide housing

Y

b

:

,,
,:
1:
1,
1,
,,
i,
1,
,,
,,
1,
,:
1,
,,
1,
,,
,,
1,
,,

o’ ha
x

Figure 2:

Cross-section of a shielded microstrip transmis-

sion line in semi-elliptical metallic enclosure

in terms of a tangential and a normal unity vector

(4)

(5)

(6)

a and b in (4) denote the semi-axis lengths along the

m and y-directions, respectively. If we now apply the

boundary conditions of zero tangential electric field and

zero normal magnetic field in the original domain, we

obtain two matrix equations with inner products at each

discrete point

Itinl ● [i?z+iq= o

[-w =0

(7)

(8)

(9)

If we express the fields in (7)-(9) in terms of the potential

functions transformed into the transform domain yields

[C/f] = o (lo)

[:] = H’[+j[~hl [~hl [@hl (11)
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One can see that [O’] (proportional to E.) remains always

[1d~h
zero at the boundary and that the vector ~ depends

on the Z- y-coordinate along the boundary. ?f’bus, all el-

[1d+h
ements of the vector —

d,
are coupled to each other.

Only in the limiting case of a piece-wise straight or rect-

[1dqhh
angular boundary, ~ will become zero.

u

Eqn. (10) and(n) aredirectly linked to the interface

condition at y = O

through the transmission line Eqn. (3) of the homoge-

neous subregion. Using the reverse transformation into

the original domain [5] and applying the boundary condi-

tion on the conductor surface leads finally to the reduced

characteristic matrix equation system

()
[Jz]

[z(p)] =0
[Jz]

(13)

which must be solved for the zeros of the determinant to

provide the propagation constant of the fundamental and

higher order modes.

RESULTS

Fig. 3 shows the dispersion diagram of the fundamen-

tal mode for two different standard circular waveguides.

The numerical results agree perfectly with those obtained

analytically. In Fig. 4 we compare the propagation char-

acteristics of a unilateral finline in a square waveguide

housing with that in a circular waveguide housing (WC-

25). For the electric wall symmetry the monomode range

in the WC-25 waveguide by far exceeds that of the square

waveguide. For magnetic wall symmetry no modes were

found in the frequency range of interest. Fig. 5 shows

a comparison between a suspended microstrip structure

and its grounded counterpart. As expected, the propa-

gation constant for the grounded microstrip structure is

much higher than that for the suspended one. Increas-

ing the strip widths in the grounded stripline leads to a

higher propagation constant, while in the case of the cir-

cular shielding the propagation constant decreases. Both

effects are already known from the shielded microstrip

line with rectangular enclosure and its suspended coun-

terpart. Mode dispersion in an open bottom slotline cov-

ered with a rectangular metallic shield is shown in Fig.

6. For comparison a semi-circular (open bottom) slotline

is shown in Fig. 7. In contrast to the ew symmetry of

the structure in Fig. 7, where only one mode can exist

(three modes in the rectangular wg), the magnetic wall

symmetry (row), shows the existence of two fundamental

modes. In other words, depending on the polarization

of the incident TE1l-mode in the circular quasi-planar

structure, one can exploit a relatively large single mode

range for this semi-open transmission line.

CONCLUSION

This paper lpresents for the first time, a detailed anal-

ysis of a variety of quasi-planar transmission lines in cir-.

cular/ellipt ical waveguide housings. Using the Method

Of Lines, which has been modified to treat curved and

open boundary value problems, we have presented nu-

merical results describing wave propagation in shielded

and semi-open ~slotline and microstrip lines.
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