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Abstract

The analysis of a class of quasi-planar transmission
lines in circular/elliptical waveguides is introduced. Data
will be presented to characterize wave propagation in mi-
crostrip and slotlines in closed and semi-open circular
metallic enclosures. The method of lines has been modi-
fied for this problem to treat curved and open boundary
value problems in this type of transmission lines.

INTRODUCTION

Since the early paper by Robertson |1} in 1955, de-
scribing an “Ultra-Bandwidth Finline Coupler”, quasi-
planar transmission lines in circular or elliptical waveg-
uide housings have been almost totally neglected. Only
recently a paper by Costache and Hoefer [2] gave some
inside in dispersion characteristics of bilateral finlines in
circular waveguides. On the other hand, quasi-planar
transmission lines in circular/elliptical waveguides are of
potential interest since they may provide a better control
of field polarization for phase shifters, antenna feed lines,
travelling wave isolators etc.

The purpose of this paper is to extend the knowl-
edge about wave propagation for a larger variety of quasi-
planar transmission lines shielded by circular/elliptical
waveguide housing. In particular we will analyze mi-
crostrip, suspended microstrip, slotline and suspended
slotline with closed circular or elliptic metallic shield-
ing. We will also investigate the semi-open boundary
case where the transmission line structure is enclosed by
a half-circular shield and the groundplane removed. Fig.
1 shows a variety of structures to be investigated in this
paper.

A rigorous analysis of wave propagation in bilateral
finlines with circular housing using the Finite Element
Method (FEM) was recently published in [2]. However, in
this approach large systems of equations must be solved
directly which requires considerable memory space and
computing power. Using the Method Of Lines (MOL) in-
stead we are able to apply a discrete orthogonal transfor-
mation and the eigenvalues problem is essentially solved
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analytically in the transformed domain. This procedure
requires only a one-dimensional discretization of the cross-
section and thus reduces the matrix sizes in the original
domain significantly. At the same time the computer
algorithm is considerably faster and does not require su-
percomputer power.

In the past the MOL was mainly applied to simple
and in most cases rectangular structures embedded in a
metallic (rectangular) enclosure. In this paper we will
modify the MOL to include also curved as well as semi-
open boundaries.

THEORY

The principle steps involved can best be explained
for the symmetrical stripline covered by a semi-circular
shield, shown in Fig. 2. Consider first of all the MOL
principle applied to the same structure with a rectangular
shield. All field components in the individual subregions
are found from a superposition of two scalar potentials
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Discretizing the cross-section in = direction allows to write
the z—dependent variables in vector form which includes
the lateral boundary and edge conditions. Applying an
orthogonal transformation and subsequently a decoupling
procedure we are able to rewrite the partial differential
Helmholtz equations as a system of ordinary differential
equations which depend only on the y-direction. This
leads to a set of inhomogeneous transmission line equa-
tions for each homogeneous substrate layer
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Up to here the method is well known from [3]-[5]. The
matrix equation in (3) is a function of the y-coordinate
at discrete points in z-direction and the boundary con-
ditions are, once they are satisfied at one location in z,
assumed to be satisfied at each z-coordinate along the
boundary. This is not true for a curved waveguide hous-
ing. In this case the field components tangential (E;)
and normal (H,) to the boundary are composed of vec-
tor components which vary along the z-coordinate. To
account for this variation in boundary conditions in the
discretization procedure we rewrite the function which
describes the curvature of the waveguide housing
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Figure 2:

Cross-section of a shielded microstrip transmis-
sion line in semi-elliptical metallic enclosure
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a and b in (4) denote the semi-axis lengths along the
z- and y-directions, respectively. If we now apply the
boundary conditions of zero tangential electric field and
zero normal magnetic field in the original domain, we

obtain two matrix equations with inner products at each
discrete point

|0 o [E.+E] = o (7)
U o [H+H,)] = 0 (8)
[EB.] =0 (9)

If we express the fields in (7)-(9) in terms of the potential
functions transformed into the transform domain yields

] = o (10)
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One can see that [¢°] (proportional to E,) remains always
h
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on the z- y-coordinate along the boundary. Thus, all el-

zero at the boundary and that the vector
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Only in the limiting case of a piece-wise straight or rect-

ements of the vector are coupled to each other.
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Eqn. (10) and (11) are directly linked to the interface
condition at y =0
[J:]
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through the transmission line Eqn. (3) of the homoge-
neous subregion. Using the reverse transformation into
the original domain [5} and applying the boundary condi-
tion on the conductor surface leads finally to the reduced
characteristic matrix equation system

(]

angular boundary,

[Z(8)] =0 (13)
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which must be solved for the zeros of the determinant to
provide the propagation constant of the fundamental and
higher order modes.

RESULTS

Fig. 3 shows the dispersion diagramn of the fundamen-
tal mode for two different standard circular waveguides.
The numerical results agree perfectly with those obtained
analytically. In Fig. 4 we compare the propagation char-
acteristics of a unilateral finline in a square waveguide
housing with that in a circular waveguide housing (We-
25). For the electric wall symmetry the monomode range
in the WC-25 waveguide by far exceeds that of the square
waveguide. For magnetic wall symmetry no modes were
found in the frequency range of interest. Fig. 5 shows
a comparison between a suspended microstrip structure
and its grounded counterpart. As expected, the propa-
gation constant for the grounded microstrip structure is
much higher than that for the suspended one. Increas-
ing the strip widths in the grounded stripline leads to a
higher propagation constant, while in the case of the cir-
cular shielding the propagation constant decreases. Both
effects are already known from the shielded microstrip
line with rectangular enclosure and its suspended coun-
terpart. Mode dispersion in an open bottom slotline cov-
ered with a rectangular metallic shield is shown in Fig.
6. For comparison a semi-circular (open bottom) slotline
is shown in Fig. 7. In contrast to the ew symmetry of
the structure in Fig. 7, where only one mode can exist
(three modes in the rectangular wg), the magnetic wall
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symmetry (mw), shows the existence of two fundamental
modes. In other words, depending on the polarization
of the incident TE;;-mode in the circular quasi-planar
structure, one can exploit a relatively large single mode
range for this semi-open transmission line.

CONCLUSION

This paper presents for the first time, a detailed anal-
ysis of a variety of quasi-planar transmission lines in cir-
cular/elliptical waveguide housings. Using the Method
Of Lines, which has been modified to treat curved and
open boundary value problems, we have presented nu-
merical results describing wave propagation in shielded
and semi-open slotline and microstrip lines.
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Figure 3: Dispersion diagram of the standard circu-
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Figure 7: Open-bottom slotline dispersion in a

semi-circular shielding
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